fpocket Users' Manual

version 2.0 June 1, 2010

authors : Vincent Le Guilloux' & Peter Schmidtke’

Jfpocket is a protein pocket prediction algorithm. Given a PDB protein structure it enables the
user to identify potent binding sites. Based on Voronoi tessellation, this algorithm is very fast and
particularly well suited for large scale protein binding pocket screenings and development of
scoring functions for binding pocket characterization. Now, fpocket also allows pocket detection on
MD trajectories and assessment of the druggability of a binding site.

- .
acarbose binding site on alpha amylase (7taa).picture generated using VMD and tachyon
rendering and GIMP post-processing.

1 ICOA - Chemoinformatics and Molecular modeling division — University of 'Orleans
2 MMB - Dept. Physical Chemistry — University of Barcelona

Notes

Notes

1. This program uses output coming from Qhull. Qhull is currently not shipped with
Jfpocket and has to be installed seperately. More information about Qhull can be found in
the paper : Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull algorithm for
convex hulls,” ACM Trans. on Mathematical Software, 22(4):469-483, Dec 1996,
http://www.qhull.org

2. Part of this software includes code based on external code developed by the Theoretical
and Computational Biophysics Group in the Beckman Institute for Advanced Science and
Technology at the University of lllinois at Urbana-Champaign. The PDB parser of the
Molfile Plugin of VMD were modified for the purposes of fpocket's PDB parsing.

3. Within the whole documentation code and output from computer programs are
represented and formatted in the following way : 1's -1 > out .t xt

4. This documentation, as well as the software itself, is under steady change. The fpocket
developer team tries to provide a useful and easy to understand documentation, a thing that
completely lacks in most of scientific open source softwares nowadays. In our opinion an
open source software is useless without documentation of the source code on one side and
documentation of the software on the other. Thus, we welcome every suggestion to improve
this documentation in terms of accuracy, clarity and completeness.

http://www.qhull.org/

Contents

Contents

INOLES cceueerenresnensnensensensnesnesaessaessnsssnsssessnsssessssssssssesssessassasssassssessessssssssassssnsesssassssaseses 1
Contents 2
INErOAUCTION. . ..ccueeieiiieiiiiicticstictinincsnisnicsanisssnesssesssnesssssssessssessssesssssssssssssssssssssanns 5
License & COPYIIGNL.....co.eiiiiiiiiiiiieeee ettt et 5
CONIITDULIONS.eeteittte ettt ettt ettt e ettt e e sttt e e sttt e e esabteesaabeeeesabaeeesabeeesannnnnes 5
Publication & CItAtiON.........ccuuiiiiiiieiiiiiee ettt ettt et e e st e e sebbeeaeeeeeea 6
COMEACE. ¢ttt ettt ettt et e bt e e bt e st e sat e sabeesabeeebee e abbbeeeesannneeeess 6
INEWSIEBEET ...ttt ettt ettt e sat e st e st e st e sbeesbaesnbeeee s 6
ACKNOWIEAGIMENLS.eeiiiiiiiiiiiie ittt ettt e e ettt e e e eeeeeeaeeea 6
INSEAllAtION....cciiiiiiiiiiitiiiiniecntccticstsstesssnessissssessesssnessssssssesssssssssesssssssssssssssssssans 7
PrOTEQUISIEES. ..eettieitieeiiee ittt ettt et s e ettt et e e bt e bt e e abbe e e e e e sabaeeeeean 7
DEPENACIICIES.eeeiiiieeeiiiet ettt ettt ettt e e st e e ettt bttt e e aeaeeeeeaannn 7
SysStem REQUITEIMENLS.cc.eiiiuiiiiiiiiiieriee ittt ettt ettt e e e e e e 7

How t0 inStall fPOCKEL.......cceiiiiiiiiiie ettt e e e eae e e aae e e s nnenes 7
KNOWIN BUZS...cccniiiieiciie ettt e et e st e e et e e s entaeesennsaeeeeeenssnnnnes 8
Results change when a structure is translatedccoccoveiieoeeioiiiiieeiniiieeene 8

Increasing usage of memory for large SCAle FUNS.............oecveveeeceeeceesiieecrieeesreeeeeens 8

Getting Started cesssssnnnesns 10
fpocket - sSimple POCKEt AEtECLION.eieriiiereriiieeeiiee ettt 10
EXQIPLC. ...ttt ettt ettt e et e e ate e e e e e nnnraaaaee s 10

BASIC IPUL .ottt ettt ettt et et sttt et e e st ee e 12

OUIPUL. ..ottt st ettt st ettt st e ebe e s it s bt e bt e s e beeeesaabeeee s 13

dpocket — pocket desCriptor EXIraCtiON.cevuieereeiieeeiiieeeeireeeeiteeeeieeeeerieeeseereeeeeeeeas 13
EXQIMPLE. ...ttt ettt et st e e 13

R Lol 1) 7 AP URRNt 14
OUIDUL c...oeeeeeeeee e et e et e e s tee e tee e steeeeseesssseesssseeessseeassseeasseeeassseesssaeeaessensnssssnneens 14
tpocket — scoring & ranking evaluation.............c.ceeiiiiriiiiieenieeniceeee et 15
Example — tpOCKet 0N QPO STTUCTUTES..........oeeueeeeeeeiieeieeeieeeieeeiieeeeeesieesaeseseesseeseaeenee 15

BASIC INPUL. ...ttt ettt e e tte e st e e e tteesbeeessbee e ssaeesaeesssaeesennsnnnnes 17
OUIPUL. ..ottt ettt et at e et e bt e s at e et e e bt e st e e e esbeeeeeasbeeas 17
mdpocket — pocket detection on MD trajeCtories........cueerueeenirenieeniieniiieeeeeiieeee e 18
EXQIPLC. ...ttt st st 18
POCKEE SELOCHION. ...ttt st 23

BASIC IAPUL. ..ottt ettt ettt et e e 24
OUtPULt (FUNIING MO 1)....eooneeeeevieiieeiieieeeie ettt ee s te et e e ba e seesnseenenes 25
OUIPUTL (FUNIING IO 2)....vveeeeeiveieeeieeieeeeesieeeiee e ste e e seesseeseesssessseeseessseeneses 25
Advanced features .26
1810701] TP PUPPPPR 26
Input cOmmMaAnd liNe QFGUIMEILS............ccoueeeeueeeeereeeeeieeercreeesteeesieeesseesseseesssreeeaeeennnes 26
OUIPUL fIleS ACSCHIPIION..........ooueeeiriiiiiiiieiisieeieetetese ettt 28
APOCKEL. ...ttt ettt e et e sttt e e ettt e e sabt e e ettt bt e et e e e eeeaeeeas 29
Input cOmmMaAnd liNe QFGUIMEILS............cccueeeeueeeeerieeecieeeecieeseeeesteeesseesseseesssreeeeeeennnes 29
OUtput files deSCTIPHION.cc..coiueiiiiiiiiiiiiiiieeeete ettt ettt ettt e e 30
19010761 AP PRI 31
Input command [iNe ATGUIMENLS.ccoeeeuevereieninienieteee sttt e 31
Actual pocket definition for evaluation of fpocket.............cccoccoevoeicinienicinicennnen.. 31
INAPOCKEL. ...ttt ettt et e et e et e e bt e s s abbee e e e saaaeeeas 32
Detect transient druggable binding POCKEtS.............cccovceveevcenvenvenencininieneeeeenn 32
Detect different types Of POCKELS..........ccuecveeeeeeiieeieiieeeieeceesie e eseeseesseesseessreee s 33
AdAITIONAL SCTIPES..c.coeeiiiiaiiieetee ettt ettt ettt e e et e e e et e e e 33
POCKET AESCIIPLOTS. ¢...eeeeueeieeiieeitte ettt ettt ettt ettt et e et e et e et e e bt e e sbeeesabeeeateeaeeenans 34
Number of alpha spheres (NOrmalized) *.............cocooveevivineiniinniniinieseeeseeeeee 34
Density of the cavity (NOFMAlizZed) F........cocovveveeecieiierieeceeeeeree e esee e erree e sreee s 34
Polarity Score (NOrmalized) F........ccoooeoeiiiiiiiiiiiieeesteee ettt 34

Mean local hydrophobic density (normalized)*............ccccooevenveevcinvennccennecnneeanne 34

Contents

Contents

Proportion of apolar alpha spheres (normalized) *............cccooveeveveeeciiecieeecirieeennn, 35
DFUGGADIIILY SCOTC........eeeeeeeeeeieeeeee e eeee et e et s e s eeeestee e s bee s s e sssnssaeeeeeeennnnns 35
Maximum distance between two alpha sphere (normalized)ccccccovuveenucnnnee. 35
HYAYOPRODICITY SCOTE ...ttt s 35
CRAFGE SCOFC.....eeieieeete ettt ettt ettt et e e e e s 35
VOIUINE SCOTC......c.ueoeiiieiiiiiiiiiecitete ettt s e e 35
COMPOSTLION Of AMUINLO ACIAS.......eoecvveeeeeieeciieeiieeie et eeee et e seesteesreesaaeseseeseesneees 35
POCKEE VOIUIME. ...ttt 36
POLAY SUTFACE AFOQ....c...eoeiiiiieieetee ettt e 36
APOLAT SUTFACE ATOQ......ceeeeeeiiiiiiiieiieeeseeee ettt 36
TOLAL SUTTACE ATCU...eooeoeeeviaeeerieiieeeecte et ste e ve et e esbeesbe e aessbaesssaeeeeneres 36
B-factor score (NOFMALIZEA).............cveevueeeeiaiieiieeieeieeceeeie et e e evae e e aaeeeeaes 36
Cofactor defiNItION.coovieiieiietiee ettt et 36
CustomizZing fPOCKEL......cocueiiiiieiiiiiieeeee ettt e 39
How 10 rebUild the PACKAGE............ccuvecueeeeierieciieeieectiesie ettt sae e sareee s 39
Writing your own SCOFING fUNCHION...........c..ceeevvieeeeeeesreeeeieeesteeesteeseeeeeseeeseeeesseeens 39
WFiting YOUT OWR dESCTIPIOTc..ooueeveiriiiiiniieiinieetesieete sttt 40
NOFrMALIZING YOUT A@SCTIPIOTS......oesueeeeeieceiesiieeiieeieeeieeeteeeie et esteseteesaeesseesseeesseeeenns 41
Including your descriptor in dPOCKer..............cccueeeeeueeeeciiieiiieeecieeecieeeevveeee e e e e senens 43
Including your descriptor in MAPOCKeL................ccceovieiciiniiiiiiiiiiii e, 44

Introduction

Introduction

Thanks for taking the time to read this official users' guide of fpocket. In this guide are presented
general functionalities of the fpocket program and its derivatives, dpocket, tpocket and mdpocket.
Yes, indeed fpocket is a package of four distinct programs, mentioned here before. fpocket is an
acronym for “finding” pocket; dpocket is an acronym for “describing” pockets as it is for extraction
of physico-chemical descriptors of pockets; tpocket is an acronym for “testing” pockets, as it is used
for testing on a large scale scoring function for ranking protein cavities developped with fpocket,
among each other. mdpocket was named after pocket detection on molecular dynamics (MD)
trajectories.

This is not a usual guide. You can find here elements you can find in usual user guides, but we
included several examples in the getting started section, which should enhance fast understanding of
how to work with fpocket. The getting started guide can be understood like a mini tutorial of basic
functionalities of this software.

Furthermore, we don't take ourself too serious, so the way this manual is written might not
correspond to the industry standard ;)

License & Copyright

This program is published wunder the GNU general public license. See
http:// www.gnu.org/licenses/gpl.txt for more information about the license.

Vincent Le Guilloux, Peter Schmidtke and Pierre Tufféry disclaim all copyright interests of
fpocket, dpocket, tpocket and mdpocket (which perform protein cavity detection, cavity descriptor
extraction, large scale cavity prediction evaluations, and pocket detection and descriptor extraction
on MD trajectories, respectively), written by Vincent Le Guilloux and Peter Schmidtke.

Contributions

The initial fpocket software was developed, validated, documented and distributed by Vincent Le
Guilloux & Peter Schmidtke. Both, contributed equally to this project (yes, I have to cope with the
eternal second author status...so that people do not want to talk to me during conferences, but only
to Vincent, but this might also be because he is much more handsome ;)). The initial work on
fpocket was initiated and supervised by Pierre Tufféry.

Latest extensions were developed, validated, documented and distributed by Vincent Le
Guilloux (jpocket) and Peter Schmidtke (mdpocket, druggability score) supervised respectively by
Luc Morin-Allory and Xavier Barril.

http://www.gnu.org/licenses/gpl.txt

Introduction

Publication & Citation

The methods paper about this software was published in BMC Bioinformatics. In order to cite
fpocket in the future, please cite this paper :

Vincent Le Guilloux, Peter Schmidtke and Pierre Tuffery, “Fpocket: An open source platform for
ligand pocket detection”, BMC Bioinformatics 2009, 10:168

A further paper was published in Nucleic Acids Research WS issue of 2010, presenting the
fpocket webserver run by Pierre Tufféry & Julien Maupetit. Next to fpocket, also a first shot of
mdpocket is made available there as well as hpocket, to identify conserved pockets on structurally
related proteins. If you want to cite mdpocket or hpocket, please cite :

Peter Schmidtke, Vincent Le Guilloux, Julien Maupetit and Pierre Tufféry, “fpocket: online tools
for protein ensemble pocket detection and tracking”, NAR WS 2010, (doi:10.1093/nar/gkq383)

Pure methods papers on the drug score and mdpocket are likely to appear very soon. If you are
reviewer of these, we highly encourage you to accept them. ;)

Contact

If you want to contact the fpocket developers please use the fpocket mailing list (fpocket-
support@lists.sourceforge.net) available on the sourceforge project website. We are happy about
positive, negative, in any way constructive feedback.

Newsletter

If you want to follow closely the forthcoming of this very dynamic project, feel free to subscribe
to the fpocket newsletter (see at www.sourceforge.net/projects/fpocket). You'll receive not very
frequent (maybe 3 times a year) an e-Mail about new releases of fpocket, containing new available
features, debugs and things like this. If you use fpocket for database construction or for MD analysis
we definitely encourage you to subscribe in order to stay up date, because we are currently working
on these things.

Acknowledgments

The fpocket developer team would like to thank Axel Bidon-Chanal and Javier Luque from the
University of Barcelona for pushing us (very early) to find a method to detect and characterize
pockets on MD trajectories and for giving us a very good example of the usefulness of this method

http://www.biomedcentral.com/1471-2105/10/168

Introduction

[see doi:10.1021/jp9074477]. Without them, mdpocket would still be a project to be done!

Installation

Installation

Prerequisites

Currently fpocket proposes two different ways for visualization of binding pockets. Both are
based on commonly used molecular visualization tools : VMD and PyMol. In order to use
visualization you need to install at least one of both softwares. Currently, visualization using VMD
has better rendering and performances and visualization using PyMol better handling of binding
pockets. You can download VMD for free from http://www.ks.uiuc.edu/Research/vmd/. PyMol can
be freely downloaded from http://delsci.com/rel/099/.

Dependencies

fpocket relies on Qhull. In the officially released version fpocket ships Qhull with it and ghull
compilation is automatically done when compiling and installing fpocket. Thus fpocket has no
dependencies that one should previously install in order to run the program (One linux headache
less).

System Requirements

fpocket is available for Linux/Unix type OS's, so also MacOSX and thanks to Alessandro
Pedretti from the University of Milano also for Windows.

In order to run fpocket, you should have at minimum a Pentium III 500 Mhz with 128Mb of
RAM. This program was co-developed and tested under the following Linux distributions :
openSuse 10.3 (and newer), Centos 5.2, Fedora Core 7, Ubuntu 8.10 as well as Mac OS X (10.5 &
10.6). Make sure you have gcc installed.

How to install fpocket

To install the full package, download the latest fpocket release from
http://sourceforge.net/projects/fpocket. This should usually provide you a file like fpocket-src-
1.0.tgz.

In order to install fpocket now, use the following series of commands in a command line.

http://sourceforge.net/projects/fpocket
http://delsci.com/rel/099/
http://www.ks.uiuc.edu/Research/vmd/

Installation

tar -xzf fpocket-src-2.0.tgz
cd fpocket-src-2.0/

make

make test

If the make and make test command yield no errors, your installation can be completed by
typing :
sudo make install

This last command only works if you have administrator rights.

For installing the supplementary data release, please refer to the INSTALL.txt file in you
fpocket-src-1.0 directory.

Known Bugs

If you encounter any strange behavior, difficulty to install fpocket or a system specific bug,
please contact the developers of this software and provide a bug report. You can find a template for
a bug report in the main directory of the distribution. This template is called bugreport.txt.

For any question for support on fpocket please use the mailing list of fpocket : fpocket-
support@lists.sourceforge.net

Results change when a structure is translated

Alessandro Pedretti pointed out that fpocket results change when the input structure is translated
prior to the fpocket run. This is a completely unwanted behaviour and a major reason for using an
algorithm based on Voronoi tessellation was its unsensitivity to rotation of the protein, compared to
grid based methods.

We tracked the problem a little down and found that it is related to imprecisions in ghull. We are
currently working on a workaround, as this problem seems to be difficult to solve on PDB structures
containing very imprecise coordinates.

Increasing usage of memory for large scale runs

When running dpocket, tpocket, mdpocket or fpocket on lists of structures, the memory usage
should be constant, but it isn't. This is because we are nasty programmers that do not free all the
memory for each elementary fpocket run. Don't worry, these aren't memory leaks, the memory is
freed correctly in the end of the run, but it should be done partially during the run. In practice this
should not bother you if (I) you have a machine with lots of RAM, or (I) if you run these programs
on a reasonable amount of structures. Typically, mdpocket runs fine on several thousands of
structures on a 8Gb RAM machine (not using 100% of the RAM).

mailto:fpocket-support@lists.sourceforge.net
mailto:fpocket-support@lists.sourceforge.net

-10-

Getting Started

Getting Started

fpocket - simple pocket detection

To run the following examples, we use several sample input files provided with the package you
have downloaded (situated in the (...)f pocket-2.0/sanpl e/ directory). Consequently, we
suppose that the current directory is set to (...)f pocket - 2. 0/, or any other directory that would
include this sanpl e/ directory and its content.

Example

Here is shown a very simple and straightforward example of how to run fpocket on a single PDB
file downloaded from the RCSB PDB[REF]. The following command line will execute fpocket on
the 3LKF. pdb file situated in the sanpl e directory.

f pocket -f sanpl e/ 3LKF. pdb

It is mandatory to give a PDB input file using the - f flag in command line. If nothing is given,
fpocket prints the fpocket usage/help to the screen. fpocket will use standard parameters for the
detection of cavities. Fore more information about these parameters see the Advanded features
chapter — fpocket section (page 28).

If fpocket works properly the output on the screen should look like this :

=========== Pocket hunting begins —=========
=========== Pocket hunting ends ============

If you have a look now in the sanpl e directory, you will notice that fpocket created a folder
named 3LKF_out/. This folder contains all the output from fpocket, so what you are actually
interested in. If you just want to see rapidly the results, go to the 3LKF_out directory and launch
the 3LKF_VMD. sh script. This script will launch the VMD molecular visualizer and charge the
protein with binding site information coming from fpocket.

-11-

Getting Started

Pocket # 1 (red)
Pocket # 2 (grey)

" VMD Main

File Molecule Graphics Display Mouse Extensions Help

Atoms Frames ‘ol

I T A D F Molecule

[i o
l At
zoom I Loop VI step il 1 _>| speed i I}

Lllustration 1: Explanation of the fpocket VMD output

The illustration above is somehow what you will see if you launch the VMD script. Well, you
will see this in less beautiful, but let us oversee the eye candy we have prepared here for you. VMD
is well suited for representing both information, the volume of alpha spheres and their respective
centers. Usually the visual volume information is not of primordial importance, as the larger alpha
spheres tend to reach far out of the protein and smaller alpha spheres are not visible because they
are recovered by larger ones. As it can be seen within the Main VMD window, the visualization
script charges 3 structures, all of them are explained in more detail in the output section of this
chapter.

If you had a closer look before on the methodological aspects of this algorithm (we invite you to
read the paper) a natural question would be how to represent apolar and polar alpha spheres.
Currently the color code represents only the residue ID (rank of the cavity). If you want to see
characteristics of alpha spheres we invite you to change the representation of alpha spheres. This
can be found by clicking Graphics -> Representations. Another window will show up. There you
select the first molecule (3LKF_out.pdb), like represented on the figure below.

-]12-

Change ReslD to Name

Hllustration 2: Showing alpha sphere characteristics using VMD

9 G Gr‘aphical'Represéﬁtatini\s

Selected Molecule

[0: 3LKF_out pdb =]
Create Rep Delete Rep
Style Color Selection
Points Name resname STP
Bonds Element not protein ani
Bonds Element protein
lad 000000 i

Selected Atoms
iresname STP|

Draw slyle| Selectioms| Trajectory\ Periodic\

Coloring Methed Iaterial
iNams _VJ]HardP\astic :j
Crawing Method

Points v Default

Size (4] 10 M

Apply Changes
% Automatically (EFaE

Getting Started

A script for fast visualization using PyMOL is also provided. PyMOL provides nice features
browsing and selecting different pockets, using the predefined selection patterns on the right side of
the main window. However, PyMOL does not interpret well the pqr file format, so alpha sphere
volumes are not accurate and only alpha sphere centers can be shown.

" PyMOL Viewer

PytOL> _

Hllustration 3: fpocket PyMOL output

Basic input

Mandatory (1 OR 2):
1: flag -f : one standard PDB file name.

13-

-
B
B
B

i
i
i
Ll
B
B

Getting Started

2: flag -F : one text file containing a simple list of pdb path
Optional:

For this see Advanced features chapter — fpocket section (page 28).

Output

Fpocket output is made of many files. To have a detailed overview of those files, see Advanced
features chapter — fpocket section (page 28).

Is there something else? No, you are done. Congratulations, you have successfully performed
your first cavity prediction with fpocket...without any accidents we hope. As you might have seen,
usage of fpocket is rather simple, although it is command line based software (for now).
Furthermore you should have seen that fpocket is very fast, well, lets say if you do not run it on a P1
100Mhz.

As mentioned before, fpocket provides much more possibilities especially for filtering out
unwanted pockets, clustering of alpha spheres. For all these issues and usage of these more
advanced features, refer to chapter Advanced features, section fpocket (page 28) of this manual.

dpocket — pocket descriptor extraction

Until now you have seen what the majority of cavity detection algorithms can do. So a part from
speed and hopefully prediction results, nothing distinguishes fpocket from other algorithms like
ligsite, sitemap, sitefinder, pocketpicker, pass ...

This is just partially true, because the fpocket package contains dpocket. D is an acronym for
describing. One purpose a cavity detection algorithm can be used for is the extraction of descriptors
of the physico-chemical environment of the cavity. dpocket allows to do this in a very simple and
straightforward way. As extracting binding pocket descriptors on only one protein would be
somehow meaningless for studying pocket characteristics, dpocket enables analysis of multiple
structures. So now, no longer scripting and automation is necessary to do these kind of things. But
lets have a closer look using again a very simple example you can try on your workstation.

Example

Here we go. dpocket requires one single input file. This input file must be a text file containing
the following information : 1 — the PDB file of the protein you want to analyze and 2 — the ID of the
ligand you would like to have as reference in order to define an explicitly defined binding pocket.
The file used in this example (sanpl e/ t est _dpocket . t xt) looks like this :

dat a/ 3LKF. pdb pcl
dat a/ 1ATP. pdb atp
dat a/ 7TAA. pdb abc

_]4-

Getting Started

Here we analyze three pdb files. Note that the ligand name should be separated by a tabulation
from the pdb file name. You can launch dpocket on this sample file using the following command :

dpocket -f sanpl e/test_dpocket. txt

dpocket will yield 3 results files in the current directory. These files will be by default :

dpout _explicitp.txt
dpout _f pocket np. t xt
dpout _f pocket p. t xt

If you want to change naming of these files, use the -o flag in command line to define a new
prefix for the fpocket output files, for example mny_test as prefix would yield
nmy_test_explicitp.txt. The three output files contain the in fpocket implemented pocket
descriptors for each binding pocket found by fpocket :

* _fpocket p. t xt, describes all binding pockets found by fpocket that match one of the
detection criteria. In other word, fpocket found several pocket in the protein, and this file will
contain descriptors of pocket that are considered to be the binding pocket using some detection
criteria.

* _fpocket np. txt, describes on the contrary all pockets found by fpocket that are not
found to be the actual pocket using the detection criteria.

*_explicitp.txt, describes the pockets explicitely defined. By explicitely defined here,
we mean that the pocket will be defined as all vertices/atoms situated at a given distance of the
ligand (4A by default), regardless of what fpocket found during the algorithm.

The ouput files are tab separated ASCII text files that are easy to parse using statistical software
such as R. Thus statistical analysis of pocket descriptors becomes a very straightforward and easy
process. Basically, the two first files might be used to establish a new scoring function as they
describes what fpocket finds, while the last file could be used for a more detailed and accurate
analysis of the exact part of the protein that interact with the ligand.

For more details of the output refer to the output section below, or to dpockets Advanced features
section (page 32).

Basic input

Mandatory:

1: flag -f : a dpocket input file, this file has to contain the path to the PDB file, as well as
the residuename of the reference ligand, separated by tabulation.

Optional:
1 : flag -o : the prefix you want to give to dpocket output files

dpocket offers much more optional parameters in order to guide the pocket detection. For
this see Advanced features chapter — dpocket section (page 32).

-15-

Getting Started

Output

For more details of the output refer to the output section below, or to dpockets Advanced features
section (page 32).

In conclusion of this first very easy dpocket run, you can see that you have a very fast and
reliable tool to extract pocket descriptors, of binding pockets and “non binding pockets” on a large
scale level. These descriptor files provide an excellent tool for further statistical analysis and model
building, which leads immediately to your wish to write a new scoring function for ranking cavities
using the different descriptors. Well, fpocket, dpocket and tpocket are very useful tools to do exactly
this! So go ahead. Lets suppose you have passed several thousands of PDB files and analyzed
statistically the significance of all descriptors. You have set up a new scoring function. Now you
have an external test set of PDB files you haven't tested. How can you evaluate your scoring
function? This is actually also a very easy task, using tpocket.

tpocket — scoring & ranking evaluation

As already mentioned in the preceding paragraph, tpocket can be used in order to evaluate
rapidly cavity scoring functions. If you are for example in the pharmaceutical industry and you want
to set up the ultimate drugability prediction score, you might be able to do this with fpocket and
dpocket. Afterwards you can actually test your method using tpocket. T is an acronym for testing,
here.

Something fancy we did not tell you about before is, that you can also test your scoring function
on apo structures using tpocket. The only requirement is the need to align holo and apo structure to
obtain a space correspondance between apo and holo pocket. But lets explain this with an example.
Of course, testing a holo dataset is even more easy, you just need to provide the resname of the
ligand and tpocket will do the rest.

Example — tpocket on apo structures

If you had a look in the publication of fpocket, you might have seen that the algorithm was
validated on a dataset of 48 proteins previously used to evaluate several pocket detection algorithms.
As fpocket programmers are, by definition, very nice people, they have included this data set (holo
and aligned apo structures) in the distribution of fpocket, released as fpocket-1.0-data. So let us use
this set as example here. When you extract the dataset in your folder you should have a data folder
containing among others two files, pp_apo-t .t xt and pp_cpl x-t. t xt. The first file is a tpocket
input file in order to assess the capacity of the scoring function to rank correctly known binding
sites on apo structures. The second file is also a tpocket inputfile, but this time for known binding
sites on holo structures. Here is a part of pp_apo-t. t xt :

dat a/ pp_dat a/ unbound/ 1Q F- 1ACJ. pdb dat a/ pp_dat a/ conpl ex/ 1ACJ. pdb t ha
dat a/ pp_dat a/ unbound/ 3APP- 1APU. pdb dat a/ pp_dat a/ conpl ex/ 1APU. pdb iva
dat a/ pp_dat a/ unbound/ 1HSI - 11 DA. pdb dat a/ pp_dat a/ conpl ex/ 11 DA. pdb gnd
dat a/ pp_dat a/ unbound/ 1PSN- 1PSQO. pdb dat a/ pp_dat a/ conpl ex/ 1PSO. pdb iva

-16-

Getting Started

dat a/ pp_dat a/ unbound/ 1L3F- 2TMN. pdb dat a/ pp_dat a/ conpl ex/ 2TMN. pdb po3
dat a/ pp_dat a/ unbound/ 3TMs- 1BI D. pdb dat a/ pp_dat a/ conpl ex/ 1BI D. pdb UwvpP
dat a/ pp_dat a/ unbound/ 8ADH 1CDO. pdb dat a/ pp_dat a/ conpl ex/ 1CDO. pdb NAD
dat a/ pp_dat a/ unbound/ 1HXF- 1DWD. pdb dat a/ pp_dat a/ conpl ex/ 1DVWD. pdb M D

Here the first column contains the path to the apo structure, aligned to the holo structure, which
is given in the second column. Using a holo dataset, the first and the second column would be the
same. The third column indicates the PDB HETATM code of the ligand in the holo structure that is
situated in the binding site.

You can use this file to run tpocket using the following command line :

t pocket -L datal/pp_apo-t.txt

Let us continue with the more interesting case, the first example, with a lot of structures. After
some time of calculation, tpocket will provide two standard output files. The moment has come, you
will finally know if you discovered the ultimate method of drugability prediction, or sugar binding
site prediction or whatever. The first file is called by default stats_g.txt. It contains global
statistics about the prediction using all evaluation criterias available in tpocket, so for example how
many binding sites you found among the 3 first ranked cavities. For representational purposes only
the first of the six tables available in this file is depicted hereafter :

Rati o of good predictions (dist = 4A)

Rank <= 1 0. 69
Rank <= 2 0.83
Rank <= 3 0.94
Rank <= 4 0.94
Rank <= 5 0.94
Rank <= 6 0.94
Rank <= 7 0.94
Rank <= 8 0.94
Rank <= 9 0.94
Rank <= 10 0.94
Mean di st ance 1 2.924573

Mean rel ative overlap : 39.373226

This table schedules the capacity of your scoring function to identify the binding sites of the 48
apo structures using the criteria published within [REF]. Not represented here, tpocket provides two
other, maybe more accurate, measures for a correctly identified binding site. These measures are
explained in more detail in the Advanced features — tpocket - correctly identified binding site
section (page Error: Reference source not found34), as they can be a bit more tricky.

The second output file provides more accurate statistics about each structure analyzed. This file,
called st at s_p. t xt enables the user to analyze more closely why scoring might not work well on
a specific structure. Here is an extract of the first columns and lines of this file :

LIG| COVPLEXE | APO| NB_PCK | OVLP1 | OVLP2 | DIST.CM| PCSl | POS2 | POS3

-17-

THA
| VA
Q\D
| VA
PCB
UVP
NAD
M D

1ACJ. pdb
1APU. pdb
11 DA. pdb
1PSO. pdb
2TMWN. pdb
1BI D. pdb
1CDO. pdb
1DWD. pdb

1Q F- 1ACJ. pdb
3APP- 1APU. pdb
1HSI - 11 DA. pdb
1PSN- 1PSO. pdb
1L3F- 2TMN. pdb
3TVB- 1BI D. pdb
8ADH 1CDO. pdb
1HXF- 1DVD. pdb

22
4
4
9

10

15

18

10

79.

0.
82.
80.
58.
63.

0.
93.

31 78. 33 0. 00 1 1
00 0. 00 3.43 0 0
69 81. 65 3.19 1 1
00 51. 38 3. 49 1 1
33 72.00 2.69 1 1
64 60. 78 3.52 1 1
00 0. 00 3.41 0 0
48 81. 37 3. 86 1 1

Getting Started

PRRRRPRRRO

Using this output you have a detailed view of what worked and what did not worked for all
criteria. For instance, in this example, fpocket detects well all apo binding sites a part from the first
one using the PocketPicker criterion for binding site identification (DIST_CM). POS3 corresponds
to the rank of the cavity using the scoring function of fpocket. You have further information about
the number of pockets per protein and the exact overlap with the actual pocket.

Now if you want to assess your scoring function on holo structures, you also can use tpocket.
This time you only have to provide the pp_cplx.txt, also provided within the distribution. As you
can see, this file is very similar to pp_apo.txt. Only the first column repeats the path to the complex
structure like this :

dat a/ pp_dat a/ conpl ex/ 1acj . pdb

dat a/ pp_dat a/ conpl ex/ 1apu
dat a/ pp_dat a/ conpl ex/ 1i da.
dat a/ pp_dat a/ conpl ex/ 1pso.
dat a/ pp_dat a/ conpl ex/ 2t rm.
dat a/ pp_dat a/ conpl ex/ 1bi d.
dat a/ pp_dat a/ conpl ex/ 1cdo.

Basic Input

Mandatory:

pdb
pdb
pdb
pdb
pdb
pdb

dat a/ pp_dat a/ conpl ex/ 1acj . pdb
dat a/ pp_dat a/ conpl ex/ 1apu. pdb
dat a/ pp_dat a/ conpl ex/ 1i da. pdb
dat a/ pp_dat a/ conpl ex/ 1pso. pdb
dat a/ pp_dat a/ conpl ex/ 2t m. pdb
dat a/ pp_dat a/ conpl ex/ 1bi d. pdb
dat a/ pp_dat a/ conpl ex/ 1cdo. pdb

t ha
iva
qnd
iva
po3
unp
nad

1: flag -L : a tpocket input file, this file has to contain the paths to the PDB files (apo, holo
or holo,holo if you want to test fpocket only on holo structures), as well as the residuename of the
reference ligand, separated by tabulation.

Optional:

1 : flag -o : the prefix you want to give to tpocket detailed statistics

2 : flag -e : the prefix you want to give to tpocket general statistics

tpocket offers much more optional parameters in order to guide the pocket detection. For
this see Advanced features chapter — tpocket section (page 34).

Output

Using standard parameters on the example tpocket list given in the example paragraph above,

tpocket returns two output files :

-18-

Getting Started

e stats_p.txt : This file contains the detailed statistics of tpocket. The name and the
ligand of the analyzed PDB structure are repeated, as well as the exact overlap of the
fpocket identified binding pocket with the actual binding pocket (identified with the help of
the ligand, called OVLP here). You will see two different overlaps in the output. For further
informations refer to advanced features on page 34. Furthermore, the distance criterion used
in the Chemistry Central Journal paper for publication of PocketPicker was used
(DIST_CM). Next, you can also have exact information about the rank of the cavity using
the fpocket scoring function.

e sats_g.txt : Second, tpocket provides more general statistics about pocket
identification on the dataset provided. For both overlap criterions the ranking performance
(the capacity of the fpocket scoring to rank correctly a binding site having a certain
minimum overlap with the actual binding site) is printed into this file. Furthermore the
distance criterion published in [REF] is also evaluated. Thus, statistics in this file gives you
a rapid overview over the global performance of your method.

Summarizing features of tpocket, one could retain, that tpocket is a very fast way to test fpockets
performance on your own dataset and test your own scoring functions for ranking purposes of
identified binding sites.

You have finished the Getting started section. We hope that you notice the usefulness of this
package of programs for the research of new features, descriptors and scoring functions in the
binding site identification field. Well, this was only a very fast overview over the very basic features
of fpocket, dpocket and tpocket. If you want to dive into development of your own pocket
descriptors and scoring functions, or if you want to change the pocket detection parameters for your
purposes, continue with the Advanced features section, next.

mdpocket — pocket detection on MD trajectories

The fpocket developer team is proud to present a very new feature as part of the fpocket software
package. As programmers are very creative people, as you might know, we called this program
mdpocket, as acronym of Molecular Dynamics pocket (very original isn't it?). In the next
paragraphs we will refer to Molecular Dynamics as MD.

Well, to our knowledge mdpocket is the first freely available software that allows you to do the
following very nice things in a quite fast way :

— pocket detection on MD trajectories (I already said this one)
— visualization of transient pockets (oh, will we have all the Pharma people on our back?)
- extraction of pocket descriptors during the MD trajectory (like pocket volume for example)

- get a static image of pocket occurrences during the MD trajectory (this you do not
necessarily see the usefulness, but this will become clearer later)

If you are already used to run and analyze MD trajectories you know that there are several

-19-

Getting Started

different softwares available to perform calculation and analysis of MD trajectories. As we do not
want to loose our rare spare time to adapt mdpocket for the last MD trajectory format of Amber,
Gromacs, Namd or whatever software, we decided to use (for now) a unified way of giving an MD
trajectory as input to fpocket. This unified format is the pdb format.

In other words, mdpocket won't eat a Gromacs XTC, Charmm DCD or Amber MD Coordinate
file, but a list of pdb files corresponding to the snapshots of the MD trajectory. Each MD software
should enable somehow easy extraction of a MD trajectory to multiple PDB files. Thus before using
mdpocket, you have to work a little bit to get a bunch of snapshot pdb files. In the following Getting
Started example we will refer to an Amber MD trajectory and we will show how you should prepare
the MD first.

Example

It is VERY IMPORTANT to first align (superimpose) all snapshots onto each other. Why?
Well, you have to do this due to the methodology used behind mdpocket. This method is yet not
published, but a paper is in progress. As soon as the paper is out about the method, we will cite this
here.

With Amber you can do the structural alignment and transformation using the freely available
ptraj program and the following steps :

1. create a ptraj input file with the following content :

trajin ../ml_1.x.g9z 1 250 10
trajin ../md_2.x.gz 1 250 10
trajin ../md_3.x.gz 1 250 10
reference ../reference. pdb
strip !:1-208
rms reference :25-88, 120-196@CA, C, N, O
traj out snapshots/snap. pdb pdb
go
2. Run ptraj using the following command
ptraj your_topology.top < ptraj _input _file.ptr

Some words about what we are doing here. First, the ptraj input reads trajectory files. In this
example, the trajectory is split up in 3 files. Each file has 250 snapshots. Here we only read every
tenth snapshot of the 250. We set a reference PDB structure for the alignment.

The strip command allows you to drop residues, here everything other than the protein (solvent,
counter ions etc...).

Next, we align each snapshot on the reference structure, using only the heavy atoms of residues
25-88 and 120 to 196.

The output is written to snapshots/snap.pdb. This ptraj run will store all pdb snapshots from the
MD trajectory to the snapshots directory and call them snap.pdb.#, where # is the number of the
snapshot. As a number is not a valid file extension (please Amber people, change this thing, it is
really annoying), you should rename your PDB files to something like snap_#.pdb. You can
achieve this with the following shell command executed in the snapshots directory :

Is | cut -f3 -d"." | awk '{print "mv snap. pdb."$0" snap_"$0".pdb"}' | sh

-20-

Getting Started

Note, that “snap” should be replaced by however you called your single snapshots. Now, there
we are nearly. The last thing to do is to create the mdpocket input file. This file is a simple text file
listing the path to every snapshot (one path per line). The entries should be ordered by time! You
can create this text file by hand, or with whatever geeky shell command, however as fpocket
developers are by definition very nice people, there is a python script in the scri pt s directory of
fpocket available for you that does this. Simply run :

pyt hon creat eMDPocket | nput Fi | e. py / hone/ pet er/ snapshots

if your snapshots are stored in /home/peter/snapshots. This script will create you a
mdpocket_input.txt file containing the list you need. Use preferably absolute paths, unless you
know what you are doing.

Now, here we are, we can run mdpocket (finally...) :
nmdpocket -L ndpocket i nput.txt

The following part will take a while, depending on the number of atoms in your system and the
number of snapshots you analyze. In average on a sample MD of 4000 snapshots (3258 atoms) 0.4
seconds of calculation time were necessary for analysis of 1 snapshot on one core of a 2.66Ghz
Intel Quad with 4Gb of RAM.

Mdpocket will print out some things and the actual status of advance of the calculation. Once
finished you will be able to find the following output files in your current folder :

. ndpout _dens_gri d. dx : This is one of the two grid output files coming
from mdpocket. Briefly, a grid is superposed to all alpha spheres of all
snapshots and the number of alpha spheres around each grid point is counted.
This output is very
useful as working
file for a first crude
visualization using
PyMOL or VMD.
In the following
example we will
show VMD as the
visualization of
grids is easier and
less heavy with it.
Open VMD and
load the DX file.
You should have
something like this
(colors are
different) :

"~ WMD 1.8.5 OpenGL Display

Lllustration 4: VMD output after opening of the mdpocket dx file.

Well, this is nice, but you can hardly see anything interpretable in there. In order to see
more clearly we recommend to change the representation by going to Graphics -> Representations

21-

Getting Started

as shown in the following illustration :

" Graphical Representations <)

interesting pocket s
Selected Maolecule) . _ g Qﬁ:{’g

Create Rep | Delete Rep | l\ o
Style Color Selection ‘\ ~V i

|sosurface ColorlD 16 =yolume=

Selected Atoms (f

|a||

Draw style| Selecticns| Trajectory| Periodic|
ing Method hdaterial

Rangel 0 I 18.72 Vo

Isoualuel 760051 |

Step ﬂldl 1 M Draw
Size «ldl 1 ﬂ!l Show

Apply Changes
’Automatically [

Hllustration 5: How to change representations to see conserved and dense pockets on a MD trajectory using VMD

_—increase the Isovalue
_—change to Wireframe
—change to Isosurface

1

Now you basically can play with the Isovalue slider to get more or less conserved cavities
during the MD trajectory. The unit of this isovalue can be expressed as number of Voronoi
Vertices (alpha sphere centers) in a 8A® cube around each grid point per snapshot. The more a
cavity is conserved (or dense) the higher this value. Thus, you will usually get internal pockets and

protein internal channels. If you are interested in very superficial or transient binding sites you
should decrease the isovalue until you see it.

e ndpout _freqg_grid.dx : This file is very similar to the previous grid file, but can
be potentially be easier to interpret by the user. Here the grid contains only a measure of
frequency of how many times the pocket was open during a MD trajectory. This, averaged
by the number of snapshots, gives a range of possible iso-values between O and 1.
Currently we provide both types of grid files, as both have proven their usefulness during
in-house studies. However, the frequency grid file is usually much easier to interpret.

This representation gives you already lots of information especially about existing paths during
a MD. For mechanistic studies this can often be enough, However, if you want to do measurements
of the volume (for example) of a certain pocket you have to select this region first. As VMD and
the grid file are not really suitable for selection, mdpocket provides a last output file called :

e ndpout _dens_iso_8.pdb : This file contains all grid points having 3 or more
Voronoi Vertices in the 8A* volume around the grid point for each snapshot. Using

22-

Getting Started

PyMOL you can now select and save only the grid points of the pocket you are interested
in. Save these points to another pdb file. Let us call this file my_pocket.pdb. The choice of
the correct grid points for your pocket definition depends completely on you. As rule of a
thumb we would recommend to use a high (like 5) isovalue if you want to show open
channels in a protein or protein internal binding pockets. You should lower this isovalue
(maybe to 2 or 3) if you are interested in transient phenomena (opening, closing of paths,
transient pockets etc...). Refer to advanced features to know how to extract these pdb files
with other iso values.

e ndpout_freq_iso_0_5. pdb : This is similar to the previous pdb file, just being
produced on the frequency grid with a cut-off of 0.5.

In order to measure the pocket around your previously defined pocket during the MD trajectory
you have to rerun mdpocket in a slightly different way :

mdpocket -L ndpocket i nput.txt -f my_pocket.pdb -v 10000

As you can see, now you have to pass your pocket definition using the -f flag of mdpocket. To
see how to define your pocket, see the section Pocket Selection in this Chapter. The -v flag is
optional, it is just to provide reasonably good volume calculations in a reasonably good execution
time. As during the first mdpocket run you should see some output first and the advancement of
mdpocket through all you snapshots. Once finished you will find some other output files in your
folder :

e ndpout _ndpocket. pdb : This is a pdb file that contains all Voronoi vertices in the

selected pocket zone for each snapshot. Each snapshot is handled as separated model (like
a NMR structure) and can thus be viewed as MD using PyMOL. Show the surface of the
vertices and you can visualize the movement of your pocket. Be careful, VMD does not
read this file, as from one snapshot to the other a different number and type of Voronoi
vertices can be part of the model.

e mdpout _ndpocket _at ons. pdb : This is a pdb file similar to the previous output,
but this time containing all receptor atoms defining the binding pocket.

e ndpout _descritpors.txt : Last but not least, maybe the most important file
containing the pocket descriptors. You will find for each snapshot the pocket volume, the
number of alpha spheres and all other default fpocket descriptors:

snapshot pock_vol une nb_AS nmean_as_ray ...
1 793. 47 183 3.76
2 726. 95 158 3.86
3 711. 87 213 3.59
4 700. 82 172 3.61
5 762. 24 196 3.85
6 618. 31 193 3. 77

This output file can be easily analyzed using R, gnuplot or other suitable software. An
example R output for the pocket volume would be :

23-

Getting Started

1200

”*_f' i ﬂll I

|
1 |
it

i 11]l'““hn'+ Hm

]

1000

volume
800
!

I I I I I I
0 200 400 8O0 800 1000
snapshot

Lllustration 6: Pocket volume variation during the MD; black :
If you want t(Oexact values, red : smoothed values

reproduce this, simply
launch R and type :

r=read. t abl e(" ndpout descriptors.txt", h=T)

yl i mec(400, 1200)
plot(r[,"pock_volume"],ty="1",ylimylim main=
par (new=T)

pl ot (snoot h. spline(r[,"pock_vol une"], df =40), col ="red", | wd=3,ylimylimty
="1", xl ab="snapshot", yl ab="vol une")

, Xl ab="",yl ab="")

On this figure you can see a clear volume increase of the pocket in the beginning of the
trajectory. Now you can check to what phenomena this increase is due to by analyzing the
ndpout _ndpocket . pdb output in PyMOL. Not shown in this example, mdpocket now provides
also measurements of the polar and apolar surface area (van der Waals + 1.4A probe) of the pocket.

Pocket Selection

In order to be able to track some nifty properties of your cavities, like the solvent accessible
surface area, the volume or other fpocket descriptors, you have to select the zone you are interested
in. This process is crucial and can depply influence sub-sequent results.

But first of all, what is a selected pocket here? Here, this means a PDB file containing dummy
atoms at the positions of grid points that overlap with grid points in the pocket grid you calculated
in the first run (frequency or density grid). How can you obtain these dummy atoms? This can be
done in two different ways.

The fast way : The first, easy and not very accurate way is to use the defaut pdb files coming
from the first run of mdpocket to detect the pocket grids. If you read this manual with a huge
attention and did not fall asleep in between, then you remember that mdpocket provides two files
called ndpout _freq_i so_0_5. pdb and ndpout_dens_8. pdb. These files contain dummy

24

Getting Started

atoms at grid point positions that were extracted at grid points having a given value or higher (iso-
value of 0.5 and 8 respectively). Now you can use one of these files (depending on if you are more
comfortable with one or the other grid, and open them in a molecular viewer that is able to edit
structures. PyMOL is an excellent choice to perform this task. Simply select all dummy atoms in the
zone of interest (your pocket you want to track) and then create an object with this selection. In the
end, the result should look somehow like this :

X PyMOL Viewer

PutOL > _

Here the red cloud corresponds to the grid points I have selected by hand. You can now save the
grid points that you selected as a PDB file and use this as an input for tracking the properties of the
cavity.

The better way : In order to get a good estimate of the volume and extent of the pocket you will
notice that the default output pdb files for the two grids are not always sufficient, because of their
predefined iso-values. This why you should extract the grid points as a PDB file using your own
choice of iso-values. As a general rule, take the iso-values as low as possible. You should still be
able to distinguish the different pockets in the density grid, but it's volume should not be very tiny!

You can extract these grid points using a python script that is available in the scri pt s directory
of the fpocket distribution, called extractlso.py. Simply execute it with python
extract| so. py to see the usage.

Basic Input

Mandatory (running mode 1):

1: flag -L : a mdpocket input file, this file has to contain the paths to the PDB files of all
snapshots (one path per line)

Mandatory (running mode 2):

25

Getting Started

1: flag -L : a mdpocket input file, this file has to contain the paths to the PDB files of all
snapshots (one path per line)

2: flag -f : a pdb file containing the pocket definition as wanted by the user (ideally a
mdpocket iso value output PDB file).

Optional:

1 : flag -o : the prefix you want to give to mdpocket output files

Note that mdpocket determines its running mode by the input given by the user. Thus if you do
not provide a wanted pocket using the -f flag, mdpocket will automatically only perform cavity
detection. mdpocket offers much more optional parameters in order to guide the pocket detection.
All fpocket parameters for pocket clustering and filtering are also available in mdpocket. For this
see Advanced features chapter — mdpocket section (page 34).

Output (running mode 1)

e ndpout _dens_grid. dx : A dx formatted grid output. This grid contains the number
of Voronoi vertices seen per snapshot nearby the grid point. It can be easily visualized using
VMD.

e nmdpout_freq_grid.dx : Similar to the prevous file, this grid file contains the
frequency of opening of a pocket at each grid point. It can be visualized using VMD.

e ndpout _dens_iso_8.pdb : A pdb file of all grid point positions corresponding to
grid points having 8 or more Voronoi vertices nearby per snapshot. This file is provided in
order to be able to edit the grid points using PyYMOL and select only the points defining the
pocket of interest. This pocket of interest should be used as input of mdpocket in the 2™
running mode. If you want to extract gridpoints with other isovalues, use the provided
extractISO.py file in the scripts directory.

e ndpout _freqg_iso_0_5.pdb : A pdb file of all grid point positions corresponding to
grid points that are 50% of the trajectory overlapping with a pocket. This file is provided in
order to be able to edit the grid points using PyYMOL and select only the points defining the
pocket of interest. This pocket of interest should be used as input of mdpocket in the 2™
running mode. If you want to extract gridpoints with other isovalues, use the provided
extractISO.py file in the scripts directory.

Output (running mode 2)

e ndpout _ndpocket.pdb : A pdb file containing all Voronoi vertices within the
selected pocket region for all snapshots. This file is an NMR like file, containing each
snapshot as separated model. This file is best viewed using PyMOL and can be used to
create pocket motion movies.

e ndpout _ndpocket _atoms.pdb : A pdb file containing all receptor atoms
surrounding the selected pocket region. Like the previous output file, this is a NMR like
file, containing each snapshot as separated model. This file can be viewed with VMD and

26-

Getting Started

PyMOL.

e ndpout _descriptors.txt : A textfile containing the fpocket pocket descriptors of
the selected pocket region for each snapshot. This file can be easily analyzed using standard
statistical software like R.

27-

Advanced features

Advanced features

You want to know more about fpocket? This is the section for you, here we tried to compile in a
(we hope) comprehensive manner the most important details of fpocket, dpocket and tpocket, to
which you have access by command line. It is primordial to know, that fpockets performance was
assessed and scoring function was established for standard parameters. The performance of pocket
detection and scoring is highly dependent on these parameters, so keep in mind that you might have
to adapt scoring to your specific problem.

Note that this section does not provide too much information about the theoretical background of
the way fpocket works. In order to learn more about this read the Materials & Methods of the freely
available paper [REF] on the BMC Bioinformatics website. Nevertheless, we tried to keep it as clear
as possible, using some application examples.

fpocket

Input command line arguments

Mandatory:

The simplest way to run fpocket is either by providing a single pdb file, or by providing a list of
pdb file, stored in a simple text file. You will need one of these two input to run fpocket:

e -f :one standard PDB file that you want to analyze with fpocket

e -F :asimple list of pdb files.

Optional:

e -m : (default 3A) This flag enables the user to modify the minimum radius an alpha
sphere might have in a binding pocket. An alpha sphere is a contact sphere, that touches 4
atoms in 3D space without having any internal atoms. Here 3A allow filtering of too small
(protein internal) alpha spheres. I you want to analyze internal interstices, lower this
parameter. In the contrary, if you want to analyze more solvent exposed cavities, you can
raise this parameter in order to filter out too buried cavities.

e - M: (default 6A) Here you can modify the maximum radius of alpha spheres in a pocket.
An alpha sphere is a contact sphere, that touches 4 atoms in 3D space without having any
internal atoms. Here 7A allow to filter out too large contact spheres, that are lying on the
protein surface. If you want to analyze very flat and solvent exposed surface depressions,
raise this parameter. For analysis of buried parts of the protein you can lower this parameter.
Higher radii might be more interesting for identification of protein protein binding sites or

28-

Advanced features

polysaccharide binding sites. Smaller radii enable detection of buried cavities for small
organic molecules (drugs, for instance).

® -i : (default 35) This flag indicates how many alpha spheres a pocket must contain at
least in order to figure in the results provided by fpocket. This parameter enables filtering of
too small cavities. Thus, if you want to analyze smaller cavities also, lower this parameter, if
you are only interested in huge cavities, like NADP binding sites, you can raise it in order to
retain only very few pockets in the end. To give you an idea, a rather big cavity, like a
NADP binding site, can have hundreds of alpha spheres. Thus, 30 as standard parameter
enables also to keep smaller binding sites.

® - A: (default 3) Fpocket distinguishes between two types of alpha spheres. Polar alpha
spheres and apolar alpha spheres. This flag ranges from O to 4 and modifies the definition
of the alpha sphere type. By default, an alpha sphere contacting at least 3 apolar atoms
(having an electronegativity below 2.8) is considered as apolar. If this is not the case it is
considered as polar.

e -D: (default 1.73A) fpocket is based on Qhull. Basically fpocket submits a set of points

(atom positions of the protein) to Qhull and Qhull returns a set of voronoi vertices and
edges and connectivity information. fpocket performs, after a first filtering of dumb alpha
spheres, a first alpha sphere clustering step. Later clustered alpha spheres will define a
pocket. This parameter here enables the user to modify the first clustering step. fpocket
seeks alpha spheres that are at most at 1.73A distance from the current alpha sphere and
connected to it by a Voronoi edge. This clustering step will create small, very local clusters.
If you want to decrease the size of these clusters of alpha spheres, decrease this parameter.
You will have as result a lot of small pockets (do not forget to modify -i in order to see very
small pockets). If you want to cluster more generously to already larger pockets in the first
step, increase this parameter.

e -1 :(default 4.5A) This parameter influences the second clustering step of small pockets
to larger pockets. For each small initial pocket (alpha sphere cluster) the center of mass is
calculated. Next, all pockets that have their centers of mass at most at a distance of 4.5A are
clustered together and form a bigger pocket. Similarly to -D, if you want to decrease the size
of the pocket, decrease this parameter. In the contrary if you want to have larger cavities as
result, increase this parameter.

® -5 : (default 2.5A) The last clustering step is a multiple linkage clustering. Here every
pocket is checked for having at least n alpha spheres at a maximum of 2.5A from alpha
spheres of another pocket. Increasing this distance will yield huger pockets and descreasing
smaller pockets. The parameter n can also be modified using the following flag.

e -n: (default 2) The number of alpha spheres a pocket has to have close to alpha spheres
of another pocket in order to be clustered together in the last clustering step. Be careful, this
clustering depends also on the distance criterion (-s flag). If you want to well distinguish
surface cavities separated by some small barriers of the protein surface you can increase
this parameter or leave it like that. In the contrary if you want to detect larger binding site,
that might even bridge of surface protrusions set this parameter to 1 or 2.

® - p : (default 0.0) This is another parameter for filtering unwanted pockets. It defines the
maximum ratio of apolar alpha spheres and the number of alpha spheres in a pocket in
order to keep the pocket in the results list. That is to say, by default every pocket is kept

-20.

Advanced features

(0.0). Now, if you would like to filter rather hydrophobic pockets, raise this parameter and
very polar cavities will be filtered out. This parameter is a ratio, not a percentage, thus it
ranges from O to 1.

® -V : (default 2500) By default, pockets volume are calculated using a monte-carlo
algorithm. Basically, the algorithm pick a random point in the space and check if it is
included in any alpha sphere, and store this status. This is repeated N times, and we
estimate the volume of the pocket using ratio between the number of hit and the number of
iteration, scaled by the size of the box. This parameter defines the number of iteration to
perform. Of course, the higher the value is, the greater the accuracy will be, but the
performance will be slowed down.

e -b : (NOT USED BY DEFAULT) This option allows the user to chose a discrete
algorithm to calculate the volume of each pocket instead of the Monte Carlo method. This
algorithm put each pocket into a grid of dimention (1/N*X ; 1/N*Y ; 1/N*Z), N being
the value given using this option, and X, Y and Z being the box dimensions, determined
using coordinates of vertices. Then, a triple iteration on each dimensions is used to estimate
the volume, checking if each points given by the iteration is in one of the pocket’s vertices.
This parameter defines the grid discretization. If this parameter is used, this algorithm will
be used instead of the Monte Carlo algorithm.

Warning: Although this algorithm could be more accurate, a high value might dramatically

slow down the program, as this algorithm has a maximum complexity of
N*N*N*nb_vertices, and a minimum of N*N*N !!!

Output files description

fpocket yields output directly in the directory of the data file, creating a directory using the name

of the PDB file followed bu the _out extension. Here, the command || sanpl e/ 3LKF _out of
the current sample run would look something like this:
total 332
-rwr--r-- 1 peter users 769 Nov 29 00: 14 3LKF. pni
-rwr--r-- 1 peter users 698 Nov 29 00: 14 3LKF.tcl
-rwWXr-xr-x 1 peter users 30 Nov 29 00: 14 3LKF_PYMOL. sh
-rwxr-xr-x 1 peter users 41 Nov 29 00: 14 3LKF_VMD. sh
-rwr--r-- 1 peter users 245835 Nov 29 00: 14 3LKF _out. pdb
-rwr--r-- 1 peter users 6725 Nov 29 00: 14 3LKF_pockets.info
-rwr--r-- 1 peter users 49355 Nov 29 00: 14 3LKF_pockets. pqr
-rwr--r-- 1 peter users 4073 Nov 29 00: 14 3LKF_info.txt
drwxr-xr-x 2 peter users 4096 Nov 29 00: 14 pockets

As you can see, fpocket provides a lot of files and another subdirectory. However, majority of
these files are necessary for easy visualization of binding pockets. Lets explain the content and
utility of each file :

e 3LKF_info.txt : this file contains human readable information (descriptors) about
the pockets found on the protein, here an extract :

Pocket 1 :
Score : 33. 993

-30-

Advanced features

Druggability Score : 0. 401
Nunber of Al pha Spheres : 76
Total SASA : 235. 646
Pol ar SASA : 102. 807
Apol ar SASA 132. 839
Vol une : 671. 804

e 3LKF. pm : thisis a PyMOL script for visualization of binding pockets using PyMOL
e 3LKF.tcl : this a tcl script for visualization of binding pockets using VMD

e 3LKF_PYMOL.sh : this is the executable script to launch fast visualization using
PYMOL

e 3LKF_VMD. sh : this is the executable script to launch fast visualization using VMD

e 3LKF_out. pdb : this is the most important file, it contains the initial PDB structure
given as input. Non cofactor HETATM occurrences will be stripped off in this file
compared to the original PDB input file. The PDB file contains centers of alpha spheres
using the HETATM definition as dummy atoms. These alpha sphere centers are attached in
the end of the PDB file, using the STP residue name (for site point). Apolar alpha spheres
carry the atom name APOL, polar alpha spheres the atom name POL. Pockets are sets of
alpha spheres. They can be distinguished by residue number. Thus residue STP 1 would be
the first binding pocket according to fpocket. To show this more clearly here is an extract of
the 3LKF_out . pdb :

ATOM 2349 CD LYS A 299 9.679 16.827 105.636 1.00 19.91 C
ATOM 2350 CE LYS A 299 10.371 16.314 104.370 1.00 25.17 C
ATOM 2351 NZ LYS A 299 11.749 15.794 104.597 1.00 32. 36 N
ATOM 2352 OXT LYS A 299 5.240 20.009 107.670 1.00 16.06 O
HETATM 2736 POL STP C 1 18.291 37.420 83.622 0.00 0.00 Ve
HETATM 2756 POL STP C 1 18.445 37.638 83.606 0.00 0.00 Ve
HETATM 3208 POL STP C 1 18.325 37.403 83.631 0.00 0.00 Ve
HETATM 3208 POL STP C 1 18.450 37.618 83.610 0.00 0.00 Ve

e 3LKF_pockets. pgr : This file contains all alpha sphere centers, as the 3LKF_out.pdb
file, but contains no information about the protein structure. Furthermore using the pqr
format enables writing of the van der Waals radius of atoms explicitely in this file. Here this
possibility was used to output the radii of alpha spheres of a pocket. Charging this pqr file,
one can analyze more precisely the volume recognized by fpocket. Note that, currently only
VMD supports reading this format correctly. PyMOL is able to read pqr file, but does not
interpret van der Waals radii.

e pockets/ : Well, again a subdirectory. But I promise, it's the last one. For development
purposes or easy analysis, fpocket proposes this directory which contains according to the
current example :

-31-

pocket O_at m pdb pocket2_vert.pgr pocket5_atm pdb pocket 7_vert. pgr
pocket O_vert.pgr pocket3 atm pdb pocket5 vert.pgr pocket8 atm pdb
pocket 1 atm pdb pocket 3 vert.pgr pocket6_atm pdb pocket 8 vert. pqgr

Advanced features

pocketl vert.pgr pocket4 _atm pdb pocket 6 vert.pgr pocket9 atm pdb
pocket 2_at m pdb pocket4 _vert.pgr pocket7_atm pdb pocket 9_vert. pgr

The *_at m pdb files contain only the atoms contacted by alpha spheres in the given
pocket. Complementary to this information, * _vert. pqgr files contain only the centers and
radii of alpha spheres within the respective pocket. As extensions mention, atoms are output
in the PDB file format and alpha sphere centers in the PQR file format.

dpocket

Input command line arguments

Mandatory:

e -f : adpocket input file, this file has to contain the path to the PDB file, as well as
the residuename (PDB HET residue tag, like “heni’, for heme) of the reference ligand,
separated by a tabulation. See the Getting started section for an example of such a file
(page 14).

Optional:

® -0 : (default dpout) the prefix you want to give to dpocket output files. The standard
will produce three output files named dpout_fpocketnp.txt, dpout_fpocketp.txt,
dpout_explicitp.txt.

e - e : Use the first explicit interface definition (default): we define the explicit pocket as
being all atoms contacted by alpha spheres situated at a distance of d A° from any
ligand atom.

e -E :Use the second explicit interface definition: we define the explicit pocket as
being all atoms situated at a distance of d A° from any ligand atom.

e - d: The distance criteria used for the explicit pocket definition.

Last, all optional parameters used by fpocket are also accessible on command line through
dpocket. Refer to the preceding paragraph to see details about fpocket parameters.

Output files description
As shown in the example, dpocket creates 3 output files. Lets describe them a bit more in detail
here :

e dpout_explicitp.txt : This file contains all pocket descriptors implemented in
fpocket of the explicitly defined binding pocket. What does this mean, explicitly? In the
input you have associated a ligand identification to each PDB file. This ligand is used by

-32-

Advanced features

fpocket in order to identify the actual binding pocket. If you want to know more about this
process, refer to the Advanced features section of dpocket (page 32). Now let us have a look
was is actually in this file.

pdb |igand overlap Iig_vol pocket_vol nb_al pha_spheres nmean_asph_ray
dat a/ 3LKF. pdb PC 100.00 132.90 1678.64 29 3.94

dat a/ 1ATP. pdb ATP 100.00 322.62 2127.53 65 3.59

dat a/ 7TAA. pdb ABC 100.00 608.66 4977.48 97 4.20

Note that this is only an extract of this file. It contains a lot of columns (descriptors) that are
not represented here. The first line describes the nature of the entry. The next line
recapitulates the pdb structure analyzed (dat a/ 3LKF. pdb), the ligand used as reference
(PC). Next the overlap between the actual and found binding pocket is shown, here 100% as
this is an explicitly defined binding pocket. The next entries can be used as descriptors, like
the ligand volume, the pocket volume, the number of alpha spheres in the binding pocket,
the mean alpha sphere radius ... For a complete list of all implemented descriptors in
fpocket, refer to the Advanced features — Pocket descriptors section (page 36).

The volumes calculated here are not accurate at all. If you want to calculate accurate
volumes you have to change parameters for volume calculation. As volume calculations are
generally over-estimated using alpha sphere approaches, especially for open binding
pockets, this calculation is made available, but uses the minimum sampling for the
calculation. For more accurate calculation significantly more calculation time would be
necessary. You can provide a higher sampling via the - v flag in the command line.

e dpout_fpocketnp.txt : This file contains the same kind of descriptors as the
preceding one, but this time for pockets identified by fpocket, that are “non binding
pockets”. Non binding pockets means here, that the pockets do not correspond to the pocket
where the reference ligand binds. Be careful, this does not necessarily mean that other
pockets do not bind anything.

e dpout _fpocket p.txt : The last file is also formated the same way as the preceding
both. This file contains the binding pocket, this time identified by fpocket and not explicitly
by the ligand.

tpocket

This program of the fpocket package is certainly very useful for testing new scoring methods
rapidly on a large dataset of protein ligand complexes. However one might encounter difficulties to
understand results, interest, advantages and drawbacks of this methodology. In order to facilitate
your understanding of this package we provide some more fundamental information first, before
treating more practical questions about tpocket.

Input command line arguments

Mandatory:

e - L :atpocket input file. This file has to contain the paths to the PDB files (apo, holo or

-33-

Advanced features

holo,holo if you want to test fpocket only on holo structures), as well as the residuename
(PDB HET residue tag, like “heni’ for heme) of the reference ligand, separated by
tabulations.

Optional:

® -0 : (default ./stats_p.txt) The filename you want to give to tpocket detailed
statistics.

® -e : (default ./stats_g.txt) The filename you want to give to tpocket global
statistics.

e -d: Distance criteria used for one of the 3 definition of a pocket: All atoms situated at
a distance lower of equal that d will be considered as part of the actual pocket.

e -k : Keep fpocket output for each pdb test.

Last, all optional parameters used by fpocket are also accessible on command line through
tpocket. Refer to page 28 to see details about fpocket parameters.

Actual pocket definition for evaluation of fpocket

Delimiting, and more generally defining what is the exact binding pocket of a protein in an
automated way is not that easy. Finding a criteria that evaluate correctly the ability of fpocket to
detect the actual binding site of a protein is consequently even more difficult.

Tpocket makes use of 6 different ways to determine if a pocket found by fpocket could be
considered as the actual binding pocket, with respect to a given ligand:

e 1 — The actual binding site is reduced to a single point, the barycenter of the pocket
(calculated using alpha spheres). The binding pocket is defined as the pocket which
barycenter is situated at a distance of 4A of any ligand atom. It corresponds to the Ppc
discussed in the paper.

e 2 — The actual binding pocket is defined by the set of atoms that are in contact with
alpha sphere that are nearby (< 3A) the actual ligand. This set of atoms is then compared to
all atoms contacted by all voronoi vertices included in each pocket found by fpocket.
WARNING: this is currently not safely usable for an holo/apo dataset.

e 3 — The actual binding pocket is defined by the set of atoms that are nearby (4A) the
actual ligand. The same procedure as for the first definition is then applied to say whether a
pocket can be considered as the actual pocket or not. WARNING: this is currently not
safely usable for an holo/apo dataset.

e 4 — The actual binding pocket is defined by the set of alpha sphere nearby (< 3A) the
actual ligand. Then, for a given pocket, we calculate the correspondence between alpha
sphere in the pocket, and alpha sphere in the actual binding pocket. If this ratio exceed a
certain value (25%), we consider this pocket as being the actual pocket.

e 5 — For a given pocket, we calculate the proportion of ligand atom that are nearby (<
3A) at least one alpha sphere of pocket. If this proportion exceed a certain value (50%), we
consider this pocket as being the actual pocket.

e 6 — A combination of both 5" and 6" criteria described above. If both 4" and 5%

-34-

Advanced features

criterion are satisfied, then this criteria is. This corresponds to the MOc (Mutual Overlap
criterion) discussed in the paper.

The reason why we choose 3A for the criteria 2, 4 and 5 is quite simple: as in the current
algorithm, the minimum radius of an alpha sphere is 3A, a ligand atom situated at a distance lower
or equal than this value can be considered as included in this alpha sphere, and therefore detected.
Of course, this applies to alpha sphere with higher radius too.

All of these criteria have their strengths and witnesses, that's why we choose to implement all of
them.

mdpocket

Lots of the functionality of mdpocket has already been covered in the Getting started section.
However, there is at least one little functionality that you can access via mdpocket that you don't
know about yet.

Detect transient druggable binding pockets

The current versio of fpocket contains to scoring methods to score the pockets. The first one is
the original fpocket score, published in the first release and the scientific paper. Later, a second
pocket score was added. This score, called druggability score intends to assess the at what point the
identified pocket is likely to bind drug like molecules. This drug score is a value between 0 and 1, 0
signifying that the pocket is likely to not bind a drug like molecule and 1, that it is very likely to
bind the latter. In combination with mdpocket the drug score can be of use when someone wants to
assess if during a MD trajectory somewhere “druggable” pockets appear. You can do this during the
first explorative mdpocket run (without studying a particular pocket), by specifying the -S flag in
command line when calling mdpocket. This flag will yield mdpocket not to do the following thing :
For each snapshot fpocket is run normally and a druggability score is associated to each pocket.
Voronoi vertices near to grid points are used to map the drug score to each grid point (instead of
counting them, we increment by the drug score of the pocket). We thus recommend to analyze the
frequency grid when running mdpocket with -S. You will immediately notice that much less pockets
are found in the grid at higher iso-values. This can also help to focus initially on your drug binding
site (if you are coming from big pharma), especially for the tedious pocket selection by hand, this is
very handy.

If you want to draw conclusions about the “mean druggability” of some pockets using the
frequency grid you should beware of the fact, that the mean drug score that you see there (the iso-
value) is very underestimated compared to values you obtain on crystal structures.

Last, but very important : if you plan to run a mdpocket calculation using -S, you should use the
fpocket default pocket detection parameters. Using different parameters, like for channels etc makes
strictly no sense as the druggability score was trained using the defaut fpocket parameters.

-35-

Advanced features

Detect different types of pockets

Fpocket was initially created to detect small molecule binding sites on proteins. That is what
most people are interested in (a big assumption, we know). But as we want to please a maximum
number of you, gentle fpocket users, we try to keep fpocket as flexible as possible via these various
(probably a bit opaque) command line arguments. These arguments become very interesting when
one is interested in a different type of pocket detection. For instance, detecting channels and gaz
pathways in a protein is a completely different topic compared to finding drug binding sites.

If one wants to identify transient internal pockets and channels one could modify the pocket
detection parameters for fpocket / mdpocket. Here we give examples of typical parameters and what
type of pockets you are likely to get back from fpocket / mdpocket :

Detect small molecule binding sites : Use the default parameters (don't specify anything)
Detect putative channels and small cavities : -m 2.8 -M 5.5-i3 -n2

Detect pockets where sterically water binding is possible : -m 3.5-M 5.5-13 -n2
Detect rather big, external pockets : -m 3.5-M 10.0-13 -n 2

Additional scripts

In order to facilitate some simple tasks for conversion, extraction and creation of input files the
fpocket distribution contains some additional python scripts that can be of use for some specific
tasks but do not have anything to do in a concrete way with the pocket detection itself. This is why
they are not included as standalone program here.

1. createMDPocket | nputFile.py : Thisis a standard python script (that should work
out of the box on all machines having python installed on it) that takes the path of all the
snapshot PDB files of a MD trajectory as input and creates a valid mdpocket input file
(alpha numerically sorted list of paths). We recommend you to use this script if you need a
valid mdpocket input file without worrying about how to order in a alphanumeric way your
file names to form a valid list.

2. extract!| SO py : This is a python script that makes use of the numpy library. If you
do not have numpy installed this will not work. However installing numpy is a rather good
idea as this is a very nice library ;). The script takes as input a mdpocket dx grid file, a
filename (the one you want for the output) and a wanted isvalue. The script will write all
grid point coordinates from the dx file having a grid value higher or equal than the wanted
isovalue to the output file.

Pocket descriptors

In order to discriminate an interesting pocket from a lot of uninteresting ones, fpocket uses
descriptors for each pocket. A scoring function, using these descriptors, was trained to well identify
what we generally call “binding site”. Here are set together all descriptors implemented in fpocket.
The ones that are currently used for scoring are marked with a *, and the one having the tag

-36-

Advanced features

normalized associated with have a normalized (ie. scaled to a [0, 1] range, the highest (resp the
lowest) value of a given descriptor being set to 1 (resp 0)) equivalent descriptor.

Number of alpha spheres (normalized) *

As the title says, this is surely the most simple descriptor. The number of alpha spheres reflects
generally more or less proportionally the size of the cavity.

Density of the cavity (normalized) *

This descriptor tends to measure the density and “buriedness” of a pocket. It is nothing else than
the mean value of all alpha sphere pair to pair distances in the binding pocket. Thus, a small value
indicates a rather big compactness of the binding pocket and thus a rather burried pocket. Larger
values give indication about more extended and exposed cavities.

Polarity Score (normalized) *

In the contrary to hydrophobicity this descriptor tries to measure the hydrophilicity character of
a binding pocket. To each residue of the binding pocket a polarity score is assigned (as published on
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm). The final polarity score is the mean of all
polarity scores of all residues in the binding pocket. This is extremely approximative, so should not
be overestimated. Each residue is evaluated only once.

Mean local hydrophobic density (normalized)*

This descriptor tries to identify if the binding pocket contains local parts that are rather
hydrophobic. For each apolar alpha sphere the number of apolar alpha sphere neighbors is detected
by seeking for overlapping apolar alpha spheres. The sum of all apolar alpha sphere neighbors is
divided by the total number of apolar alpha spheres in the pocket. Last this score is normalized
compared to other binding pockets.

Proportion of apolar alpha spheres (normalized) *

This descriptor, returned as percentage, reflects the proportion of apolar alpha spheres among all
alpha spheres of one pocket identified by fpocket. This can reflect somehow the hydrophobic/-philic
character of a binding pocket.

Druggability Score

The druggability score is a numerical value between 0 and 1 associated to each pocket using a
logistic function. This scores intends to assess the likeliness of the pocket to bind a small drug like
molecule. A low score indicates that drug like molecules are likely to not bind to this pocket. A
druggability score at 0.5 (the threshold) indicates that binding of prodrugs or druglike molecules
can be possible. 1 indicates that binding of druglike molecules is very likely. The theoretical basis

-37-

http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm

Advanced features

of the score is currently in the lengthy process of scientific publication.

Maximum distance between two alpha sphere (normalized)

This descriptor store the maximum distance found between two alpha sphere in a given pocket.

Hydrophobicity Score

This descriptor is based on a residue based hydrophobicity scale published by Monera & al. in
the Journal of Protein Science 1, 319-329 (1995). For all residues implicated in the binding site the
mean hydrophobicity score is calculated and is used as descriptor for the whole pocket. Each
residue is evaluated only once.

Charge Score

According to (http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm) the charge of each amino
acid in the binding site is tracked. The mean charge for all amino acids in contact with at least one
alpha sphere of the pocket is calculated to form this charge score. Each residue is evaluated only
once.

Volume Score

Similarly to other descriptors, this one is based on data published on (http:/www.info.univ-
angers.fr/~gh/Idas/proprietes.htm). This data resumes relative volume of different amino acids. In
order to calculate this descriptor the mean volume score of all amino acids in contact with at least
one alpha sphere of the pocket is calculated. Each residue is evaluated only once.

Composition of amino acids

As the name indicates, fpocket tracks the composition in amino acids of binding pockets. If at
least one atom of a residue is in contact with at least one alpha sphere of a binding pocket it is
accounted to be part of the binding site. This descriptor is returned as cumulative list, for instance
you can find 2 valines, 3 glutamates etc... in the binding site.

Occurences of amino acids in different descriptor outputs are given in the following order : Ala,
Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr.

Pocket volume
As indicated by the name, this descriptor tries to evaluate the volume of a binding pocket using a

Monte-Carlo algorithm that calculates full volume occupied by all alpha sphere in a given pocket.
The number of iteration of this algorithm can be controlled using fpocket input parameters.

-38-

http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm

Advanced features

Polar Surface Area

This descriptor provides an estimation of the polar surface area of the pocket based on
information of the receptor atoms. The method used to calculate the area only provides an
approximation, but should be good enough to get some rather relevant estimates.

Apolar Surface Area

See polar surface area in the previous point, only for apolar atoms.

Total Surface Area

The sum of the polar and apolar surface area of the pocket, that is to say the receptor side surface
area of the pocket.

B-factor score (normalized)

Please handle with a lot of care this score with native crystal structures. This score is based on
the mean B-factor of all atoms of the binding pocket (atoms that are contacted by at least one alpha
sphere). As the B factor does not necessarily reflect flexibility in crystal structures, this score is
somehow abusive. However, one could imagine performing molecular dynamics or other in order to
determine relative flexibility of atoms and store this information in the B-factor column of the PDB
file format.

This descriptor is normalized with other pockets of the same protein.

List of abbreviations used in dpocket & mdpocket output

. pdb : pdb file name
. lig : ligand HET ID

. overlap : overlap of atoms in the actual pocket versus atoms in the pocket identified with
fpocket

. PP-crit : binary PocketPicker criterion (1 if the ligand is < 4A from the center of mass of
the alpha spheres, O else)

. PP-dst : the minimum distance between the center of mass of the pocket and the ligand
. crit4 : proportion of ligand atoms that have at least one vertice that lies within 3 A
. crit5 : proportion of alpha spheres that lie within 3A from any ligand atom

. crit6 : binary criterion that is 1 if crit4 >=0.5 and crit5>=0.2, 0 else

. crit6_continue : a continuous measure of crit6, but this is experimental and we currently
don't use it...

-39-

Advanced features

. lig_vol : volume of the ligand
. pock_vol : volume of the pocket

. nb_AS : number of alpha spheres

. nb_AS_norm : number of alpha spheres normalized by all pockets on the protein
. mean_as_ray : mean alpha sphere radius

. mean_as_solv_acc : mean alpha sphere solvent accessibility

. apol_as_prop : proportion of apolar alpha spheres in the pocket

. apol_as_prop_norm : normalized proportion of apolar alpha spheres

. mean_loc_hyd_dens : mean local hydrophobic density

. mean_loc_hyd_dens_norm : normalized mean local hydrophobic density

. polarity_score_norm : normalized polarity score

. flex : measure of the flexibility of the pocket (B-factor based)
. prop_polar_atm : proportion of polar atoms

. as_density : alpha sphere density

. as_density_norm : normalized alpha sphere density

. as_max_dst : maximum distance between the center of mass and all alpha spheres
. as_max_dst_norm : normalized as_max_dst

. drug_score : druggability score

. pock_asa : solvent accessible surface area of the pocket

. pock_pol_asa : polar solvent accessible surface area of the pocket

. pock_apol_asa : apolar solvent accessible surface area of the pocket

. pock_asa2?2 : accessible surface area using a probe of 2.2 A instead of 1.4
. pock_pol_asa22 : see pock_pol_asa and pock_asa22

. pock_apol_asa22 : see pocket_apol_asa and pock_asa22

Cofactor definition

fpocket, dpocket and tpocket contain in the current release (1.0) a fixed set of cofactors. So far so
good, but what for? Cofactors are often structurally necessary or must be present in the protein
structure for ligand binding. The PDB nomenclature, however, treats them as usual hetero atoms,
using the HETATM tag. This is the tag that fpocket uses to identify and eliminate crystallographic
waters and possible ligands of holo protein structures. In order to force fpocket to keep the cofactor
you are interested in, that is to say, to consider it as entire part of the protein structure for binding
pocket detection, a list list of HETATM names is defined in the beginning of the r pdb. ¢ file under
the name stati ¢ const char *ST_keep_hetat ni]. The next line of code defines the number

-40-

of cofactors defined in this list : stati ¢ const

Advanced features

int ST_nb_keep_hetatm = 111 ;

If you would like to add a new cofactor, you have to modifiy this code. First you add the whished
HETATM tag to ST_keep_het at min the end of the list. Thus for example, “ MSE” will become

“MSE”, " PTE" if your

cofactor has the HETATM tag PTE. Do not forget to increment the

ST_nb_keep_het at mvariable to 112, else this cofactor will not be taken into account.

Next you have to recompile the program, before being able to use this new definition.

In future releases this cofactor definition will be done dynamically with an external list.

The following list resumes the cofactors fpocket considers as recurrent in the PDB and useful to
keep in protein structures in a systematic manner.

HETAT HETATM HETATM
name name name
M tag tag tag
hea Heme-a hbi 7,8-dihydrobiopterin bio Biopterin
cfm Fe-mo-S cluster clp Fe-S cluster fes Fe2/s2 (inorganic)
cluster
f3s Fe3-s4 cluster fs4 Iron/sulfur cluster bph Bacteriopheophytin a
bpb Bacteriopheophytin B bel Bacteriochlorophyll a bcb Bacteriochlorophyll B
cob Co-methylcobalamin zn Zinc ion fea Monoam.c.lo—mu—oxo—
diiron
feo Mu-oxo-diiron h4b 5078 bh (6r.I'R,2)-5,6,7.8
tetrahydrobiopterin tetrahydrobiopterin
6s-5,6,7,8- 7,8- Dihydro- L- . .
bhs tetrahydrobiopterin hbl Biopterin thb Tetrahydrobiopterin
ddh Diacetyldeuteroheme dhe Heme D has Heme-as
Cis-heme D Dimethyl propionate
hdd hydroxychlorin gamma- hdm Y prop heb Heme B/C
. ester heme
spirolactone
hec Heme C heo Heme O hes Zine substguted heme
[7,12- DIETHYL-
3,8,13,17-
TETRAMETHYL-
hev 1,3-Dedimethyl-1,3- mhm 21H,23H- PORPHINE- orm Siroheme
Divinyl Heme 2,18- DIPORPANOTO-)
(2)-
N21,N22,N23,N24,]
IRON
ver Iron-octaethylporphyrin 1th 12-phenylheme 2th 2-phenylheme
2 iron/2 sulfur/6 2 iron/2 sulfur/5 Smallest hf-0xo-
hcO carbonyl/1 water hel carbonyl/2 water hf3 x
. . . . phosphate cluster hf3
inorganic cluste inorganic cluster
hf5 Hf oxo cluster hf5 nfs Fe(4)-ni(1)-S(5) cluster omo Mo(vi)(=0)(oh)2

A4]-

Advanced features

cluster
phf H-oxo-phosphate sf3 Fe4-s3 cluster st4 Iron/sulfur cluster
cluster phf
cfm Fe-mo-S cluster cfn Fe(7)-mo-S(9)-N clf Fe(8)-S(7) cluster
cluster
clp Fe-S cluster cnl Oxo-iron cluster 2 cnb Oxo-iron cluster 1
cnf Oxo-iron cluster 3 cub Cu(l)-s-.mo(lv)(ZO)O- cum Cu(i)-S-mo(vi)(=O)oh
nbic cluster cluster
cun Cu(i)-S-mo(iv)(=O)oh cuo Cu2-02 cluster fs2 Fe-S-O hybrid cluster
cluster
fso fron/sulfur/oxygen fs FE4-S3-03 Cluster ho Pheophytin a
hybrid cluster x 4 p Pyl
4-bromo-3-hydroxy-3-
bhi methyl butyl chl Chlorophyll B cll Alpha chlorophyll a
diphosphate
cl2 Beta chlorophyll a cla Chlorophyll a cch Clorocruoro HEM
cfo Chloro d.11r0n—0xo fe2 Fe (ii) ion fci Ferricrocin-iron
moiety
fco Carl?onmon(?x1de- fdc Iron(iii) dicitrate fea Monoaz@o-mu-oxo-
(dicyano) iron diiron
(mu-sulphido)-bis(mu-
e s cys,S)-[tricarbonyliron- . Fe(iii)-(4-
feo Mu-oxo-diiron fne di-(cys, S)nickel(ii)] hif mesoporphyrinone)
(Fe-ni)
Hydroxy diiron-oxo . -
ofo . pfc Phenylferricrocin-iron heS ZND-DME
moiety
Bis(5-amidino- Bis(5-amidino-
baz benzimidazolyl)methan boz benzimidazolyl)methan fe Fe (iii) ion
e zinc one zinc
hem Protopo.rp.hyrm ix heo 2-acetyl-pr(_)top0rphyr1n Iep Coproporphyrin i
containing Fe ix
cln Sulfur substlt.ut.ed coh Protopo'rp.hyrm ix cp3 Coproporphyrin iii
protoporphyrin ix containing co
deu Co(iii)- o fdd Fe(iii) 2,4-d1me.:th.yl fde Fe(iii) o
(deuteroporphyrin ix) deuteroporphyrin ix deuteroporphyrin ix
Fe-(4- Protoporphyrin ix
fec FE-Coproporphyrin III fmi mesopor‘phyrmone)—R— heg containing Mg
isomer
heg ProtopgrPhyrln X hni Protop'or.phyr}n_ ix mmp N- '
containing Mg containing ni(ii) methylmesoporphyrin
. N-
mnh Manganes§ . mnr Protop (?rphyrln x mpl methylmesoporphyrin
protoporphyrin ix containing Mn .
containing copper
pc3 Coproporphyrin i pcu Cu(ii)meso(4-N- pni Tetra[N-methyl-pyridyl]
containing co(iii) tetramethylpyridyl)porp porphyrin-nickel
hyrin
por Porphyrin Fe(iii) pp9 Protoporphyrin ix mse Selenomethionine

4D-

Advanced features

Customizing fpocket

This section will introduce several ways of customizing fpocket by modifying the source code.
We will first gives all instructions needed to recompile and rebuild the full package when any
modification of the source code has to be taken into account. Then, we will describe how to write a
new scoring function, and how to write your own descriptors and include it to dpocket output. We
will not show the full content of the function to modify as we want to stay as concise as possible.
The newly added code for these examples will be highlighted in blue.

How to rebuild the package

After any modification to the fpocket source code, you will logically need to rebuild the package
so the modification could be taken into account. Here is the current procedure to do so:

$ cd PATH/fpocket-src-1.0
$ make uninstall

$ make clean

Then, you will have to perform the installation process again to rebuild the package.

Writing your own scoring function

Writing your own scoring function using currently implemented descriptors is a simple task,
provided that you are not afraid to write one line of C code. Currently, the fpocket algorithm sort
pockets using each pocket score. Each score is calculated by a single function. The source file
src/pscoring.c contains the definition of this function that have the following prototype:

float score_ pocket(s_desc *pdesc) ;

The function takes as argument a pointer to a structure that contains all descriptors currently
available in fpocket, and is called for each pocket to be scored. All descriptors available have been
described previously, and you can check the exact name given to each of them in the source file
headers/descriptors.h that defines the s_desc structure shown here.

Lets say that you just want to score pockets according to the number of alpha sphere of each pocket.
To do so, you just have to change the content of score_pocket function and return the right value:

float score_pocket(s_desc *pdesc)

{
float score = (float) pdesc->nb_asph ;

return score ;

43-

Advanced features

}

Although this example is really simple, you may now understand that you can write any kind of
scoring function, like a linear or non-linear combination of descriptors derived from a regression
model or any other method. The only limitation is the use of available descriptors implemented in
fpocket.

Of course, although the current scoring function has very satisfying performances using only 4 of
the available descriptors, you may want to implement your own set. The next section will give you
the basics to do so.

Writing your own descriptor

So what if you want to write your own descriptors? Well this will be a little more difficult than
writing your own scoring function, but nothing is impossible!

Suppose that we want to add a new (and very simple) descriptor: the maximum alpha sphere
radius in a given pocket.

First of all, you have to add the variable that will store your descriptor to the structure containing
all descriptors. This has to be done in the descriptor.h source file, in the definition of the structure
s_desc. We will add the following line:

typedef struct s_desc
{
float as_max r ;
} s_desc ;
After adding our variable, we need to give a default value when no calculation have been
performed, lets say -1. This is done in the function reset_desc located in the same file:
void reset_desc(s_desc *desc)
{
desc->as max r = -1.0 ;
}

Let's now implement our descriptor. Go to the src/descriptor.c source file. In this file, you fill
find the main function that calculate descriptors based on a list of atoms and a list of alpha sphere.
Here is the prototype of this function:

void set_descriptors(s_atm **tatoms, int natoms,

s vvertice **tvert, int nvert,

s_desc *desc) ;

As you can see, the function takes in argument a list of atoms, a list of vertices, and an
input/output descriptor structure that will actually store all descriptors calculated. When descriptors
has to be calculated on a given pocket, we first get all atoms and vertices of the pocket, and we call
this function using those atoms and vertices as arguments. The calculation then use information on
atoms and vertices to calculate descriptors.

Based on those parameters, you will have to write your own code in this function, and update in
consequent the desc variable given in argument so the descriptor value could be stored. Lets do

44.

Advanced features

this. You will probably notice that the current code is not fully modular. This is because of
computational optimization: a fully modular code sometimes requires additional loop and treatment
compared to an optimized code. Anyway, the task is still very simple. Lets go into the part of the
code that will do the job.

void set descriptors(s_atm **tatoms, int natoms,
s_vvertice **tvert, int nvert,
s_desc *desc)
{
float as max r = -1.0 ; /* Declare and initialize the descriptor */

for(i = 0 ; i < nvert ; i++) {
/* Loop through all vertices and update descriptors */
vcur = tvert[i] ;
if(vcur->ray > as_max_r) as_max_r = vcur->ray ;

desc->as _max r = as_max_r ; /* Store the descriptor */
}

That's it, your descriptor is implemented, as each pocket descriptors is automatically calculated
using this function at the end of the fpocket algorithm. Thus, it can now be used in the scoring
function described previously, after rebuilding the package of course.

Normalizing your descriptors

An advantage of normalization is that two descriptors generated from pockets of two different
proteins can be compared to each other at a certain degree, depending on the normalization process.
For example, if we normalize the number of alpha sphere between 0 and 1 (well here it's more a
scaling than a normalization), the largest pocket of any protein will always have 1 as value for the
normalized descriptor.

To do so, we can't use the exact same process as adding a given descriptor, because all
descriptors of all pockets need to be calculated before the normalization step. Consequently, the
calculation of all normalized descriptors is currently performed in the src/pocket.c source file. In
this file, the function set _normal i zed_descri ptors does the job, and have the following
prototype:

void set normalized descriptors(c_lst_ pockets *pockets)

As you can see, it simply takes in argument a list of pockets, in fact a simple chained list, e.g. all
pockets found in a given protein. Of course each pocket contained in this structure have a descriptor
structure associated with.

45-

Advanced features

Lets now enter more deeply into the code, and implement a normalized version of the new
descriptors so it ranges between 0 and 1. The first step is similar to the first step needed to
implement a new descriptors: you need to add a variable that will store this normalized descriptor in

the structures pdesc:
typedef struct s_desc

{

float as_max r ;
float as_max r norm ;
} s_desc ;
You can now add the default initialization of this descriptor:

void reset_desc(s_desc *desc)

{
desc->as max r = -1.0 ;
desc->as_max_r norm = -1.0 ;

}

Lets implement the descriptor now. Go to the src/pocket.c source file,
set _normal i zed_descri pt or function. To calculate the normalized descriptor, we need the min

and max value of the non-normalized descriptors. Next, we have to loop on the pocket list, update
the min and max if necessary, and perform the normalization at the end of the loop. So easy:

void set normalized_descriptors(c_lst_pockets *pockets)
{

/* Declare min and max */

float as_max_r m = 1000, /* Initialize to a large value*/

as max r M = -1.0 ; /* Initialize to a small value */
cur = pockets->first ;
/* Perform a first processing step, e.g. to set min and max */
while(cur) {
dcur = pcur->pdesc ;
if (cur == pockets->first) {
/* If it is the first pocket, min = max = pocket */

as max rm = as max r M = dcur->as max r ;

else {

/* If it is the Nth != 1 pocket, check and update

min and max if necessary*/

46-

Advanced features

if(dcur->as _max_r > as_max_r M)
as_ max r M = dcur-> as _max_r ;
else if(dcur->as _max_r < as_max_m)
as_max_r m = dcur->as_max_r ;
}

cur = cur->next ;

/* Perform a second loop to do the actual normalisation */
cur = pockets->first ;
while(cur) {

dcur = cur->pocket->pdesc ;

dcur->as_max_r norm = (dcur->as_max_r - as_max_r_m)

/ (as_max r M - as_max_r m) ;

}

And that's it. There is a little bit more effort to provide here to normalize the descriptor, but we

believe it's not that much to do.

Unfortunately, we haven't taken the time to automatically add any new descriptor to the dpocket

input. So basically here, your descriptors is implemented and can be used by a scoring function, but
is not written to the dpocket output. The next paragraph will learn you how to so, it's very easy.

Including your descriptor in dpocket

Although it would be possible, we haven't taken the time to construct a system that would detect

and add automatically any new descriptor to the dpocket output.

So let's do this manually. The dpocket output format is defined by 3 macros in the dpocket.h

header file:

#define M_DP_OUTP_HEADER "pdb lig ...”
#define M_DP_OUTP_FORMAT "3%s %S ...”

#define M DP_OUTP_ VAR (fc, 1, ovlp, status, dst, 1lv, d) fc, 1, ...

The first macro defines the header of the output file. The second macro corresponds to the

format of each value to output given to the fprintf function. Finally, the last macro is the list of
variables, with d being the pointer to the descriptor structure defined previously. Basically, writing
the dpocket output for each pocket requires two main processes: write the header, and loop to write
each pocket descriptor.

To include our descriptor into the dpocket output, we just need to add the header label of the

47-

Advanced features

descriptor, add the output format of the descriptor, and add the descriptor itself. Those three steps
will modify the first, the second, and the third macro defined previously, respectively. The only
difficulty is to keep the correspondence between of all 3 positions (header, format and variable) in
the line: column number (position) of the header corresponding to the number of alpha sphere must
correspond the that of the format and variable. For example, if we want to add our normalized
variable at the first position of dpocket output, it would give:

#define M DP_ OUTP_HEADER "as max r pdb lig ...”
#define M_DP_OUTP_FORMAT "%3.5f %s %s ...”

#define M DP_OUTP_ VAR (fc, 1, ovlp, status, dst, lv, d) d->as _max r,
fc, 1, ovlp,

That's pretty all. Remember to be careful on this step: adding a new descriptor to dpocket is
really easy in theory, but losing the correspondence between header, format and variable position
columns is easy too, in which case interpretation, visualization and analysis of dpocket output can
become somehow difficult or even meaningless.

Including your descriptor in mdpocket

Adding a descriptor to mdpocket works pretty much the same way than in dpocket. So write your
own descriptor like described previously for dpocket. The only difference is the last step, instead of
modifying the dpocket.h macros you should modify the macros of mdpocket.h. They are
constructed exactly the same way and are even somehow easier because smaller :

#define M _MDP_ OUTP_HEADER "snapshot pock volume nb AS...”
#define M _MDP_OUTP_FORMAT "3%d %4.2f %d %4.2f %4.2f %34.2f..."

#define M MDP_OUTP_VAR(i, d) i, d->volume ...

Simply add the header of your descriptor the output header macro, the output format to the
format macro and the variable to the variable macro, exactly like in the previously described
dpocket.h file.

48-

	Notes
	Contents
	Introduction
	License & Copyright
	Contributions
	Publication & Citation
	Contact
	Newsletter
	Acknowledgments

	Installation
	Prerequisites
	Dependencies
	System Requirements
	How to install fpocket
	Known Bugs
	Results change when a structure is translated
	Increasing usage of memory for large scale runs

	Getting Started
	fpocket	- simple pocket detection
	Example
	Basic input		
	Output

	dpocket – pocket descriptor extraction
	Example
	Basic input
	Output

	tpocket – scoring & ranking evaluation
	Example – tpocket on apo structures
	Basic Input
	Output

	mdpocket – pocket detection on MD trajectories
	Example
	Pocket Selection
	Basic Input
	Output (running mode 1)
	Output (running mode 2)

	Advanced features
	fpocket
	Input command line arguments
	Output files description

	dpocket
	Input command line arguments
	Output files description

	tpocket
	Input command line arguments
	Actual pocket definition for evaluation of fpocket

	mdpocket
	Detect transient druggable binding pockets
	Detect different types of pockets
	Additional scripts

	Pocket descriptors
	Number of alpha spheres (normalized) *
	Density of the cavity (normalized) *
	Polarity Score (normalized) *
	Mean local hydrophobic density (normalized)*
	Proportion of apolar alpha spheres (normalized) *
	Druggability Score
	Maximum distance between two alpha sphere (normalized)
	Hydrophobicity Score
	Charge Score
	Volume Score
	Composition of amino acids
	Pocket volume
	Polar Surface Area
	Apolar Surface Area
	Total Surface Area
	B-factor score (normalized)
	List of abbreviations used in dpocket & mdpocket output

	Cofactor definition
	Customizing fpocket
	How to rebuild the package
	Writing your own scoring function
	Writing your own descriptor
	Normalizing your descriptors
	Including your descriptor in dpocket
	Including your descriptor in mdpocket

